sábado, 14 de marzo de 2015

3. Principio de propulsión


Un tren maglev es propulsado mediante un motor lineal. El funcionamiento de un motor lineal deriva de un motor eléctrico convencional donde el estator es abierto y “desenrollado” a lo largo del carril-guía en ambos lados.

El principio básico para los cálculos de la fuerza del motor es la ley de Lorente, la cual dice que la interacción entre una corriente y un campo magnético en un conductor genera una fuerza, como se muestra a continuación:
F=i (l*B) [N]
“F” es la fuerza que generará el movimiento del vehículo, “i” la corriente del elemento sobre el cual se calcula la fuerza, “l” la longitud del conductor inmersa dentro del campo y “B” la densidad de campo magnético.
Gracias a la segunda ley de Newton se sabe que la sumatoria de fuerzas en un sistema en determinado instante de tiempo es igual a cero; este hecho está directamente relacionado con que se pueda suponer el cálculo de la fuerza en dos sentidos; uno en que el imán produce la fuerza sobre el estator y otro en que el estator produce una fuerza que hace mover el imán, o más exactamente el vehículo.
En este caso se asumirá que el campo generado por el estator, generará la fuerza para que el vehículo se mueva.
La fuerza magnética y la fuerza mecánica que se opone se compara instante a instante. La fuerza magnética induce aceleración y a la vez velocidad sobre el vehículo, y de esta manera un desplazamiento. Si se repite este cálculo en cada momento se tendrá la ubicación del vehículo en cualquier instante de tiempo en función de los parámetros físicos que gobiernan el sistema, como se muestra en las ecuaciones a continuación. 
Fmag(k)= Fmec(k)
Es importante entender que la posición en que se presenta el campo magnético máximo cambia en cada instante de tiempo, por lo que cada determinado tiempo de muestreo se deben recalcular la nueva posición del campo y del vehículo. La velocidad con que se desplaza el campo magnético está dada por: 
vel= 2* f*A
En este caso “vel” es la velocidad, “f” la frecuencia que alimenta el sistema trifásico , “A” es el espacio ocupado por tres ranuras y tres dientes del núcleo, es decir una de las polaridades del campo que se desplaza.

3.1. LSM:
Motor Lineal Síncrono Este sistema de propulsión utiliza como estator un circuito de bobinas sobre la vía, por el cual circula una corriente alterna trifásica controlada. El rotor esta compuesto por los electroimanes del tren, en el caso de un EMS, o las bobinas superconductoras en un EDS. El campo magnético que crea la corriente alterna del estator interactúa con el rotor (electroimanes o bobinas superconductoras) creando una sucesión de polos norte y sur que empujarán y tirarán del vehículo hacia delante, como muestra la figura:

Este campo magnético (también llamado "onda magnética") viajará junto al tren a través del carril-guía, permitiéndole a este acelerar. Así, el rotor viajará a la misma velocidad que el campo magnético. La regulación de la velocidad del tren se logra bien regulando la frecuencia de la onda magnética (o sea, variando la frecuencia de la corriente alterna) o bien variando el número de espiras por unidad de longitud en el estator y el rotor. Una característica importante de este sistema es que la energía que mueve al tren no la provee el mismo tren, sino que esta es proveída por las vías. Esto permite evitar un malgasto de energía fraccionando la vía en secciones, de manera que cada una tenga su alimentación, de esta manera solamente estarán activos aquellos tramos de la vía por los que en ese momento esté transitando el tren.
 Los trenes maglev, gracias a su sistema de propulsión, son capaces de circular por desniveles de hasta 10 grados, en contraste con los trenes convencionales que sólo pueden circular por pendientes con desniveles de hasta 4 grados.
Además la velocidad que alcanzan los trenes maglev es muy superior a la alcanzada por los trenes convencionales (inclusive los trenes eléctricos), llegando hasta 500 Km/h (hasta el momento) y su consumo es de solamente un 40 % del combustible usado por un automóvil por pasajero y milla, debido a la reducción del rozamiento con la vía.

1 comentario: